v 1.0.0

Building a Check Point Firewall Log Analysis Server using

Debian Linux, fwl-loggrabber, and MySQL
Author: Mark Stingley, GCIH GCIA GPEN

ggiac _AT_ altsec.info

Copyright © 2009 Mark Stingley

v 1.0.0

Outline
1. TntrodUCtiON. « o o o o oo oo oo eesosoossssoosooosossssssssssosscassas 3
2. JUustificAtioN..eeeeeeeeeoooeooooosssssoosssoosooosssossssssas 3
3. CaveatS.eeeeeeeeeeesseessseassseessseessseessscesssesscssecas 4
4, Methods Of LOg ACCESS . e o e oo ooooosossosssssosssssssessosossss 5
Offline EXPOrt..ceeeeeeeeeeeeescsssosssosssesssscssssssssssssscsss 5
ONline, REAL-TIME . e et eeeeeoeeooscoccocsssssccssssssssscscsssssscs 6
5. Implementing fwl-loggrabber.......eeeeeeeeeeeeeeeeeeeeeossss 6
32-bit Or 64-bit...iiiieeeeeeeeeeeeeeeeeeccccccooosssssnsssss 7
One system Or tWO...eeeeeeeeseecesescscasosescssasocscscsssssses 8
Building the client hosSt...ieeeeeieeeeeeeeeecoecccsssancscsss 8
Setting up fwl-loggrabber on a 64-bit server.....cceeeeeeees 11
Configuring the Checkpoint Firewall......oeeeeeeeeeeccacncns 14
Configuring fwl-loggrabber......ieeeieiieeieeeeeeeneeccsnnnns 19
6. Hacking the fwl-loggrabber code........ccooeeeeeossssssacas 23
7. Scripts for fwl-loggrabber......eeeeeeeeeeecessssssccacccss 26
8. References...oeeeeeeeeeesseeesseessseessseessscesssesscosss 28

v 1.0.0

l.Introduction

It is no wonder that firewall log analysis is becoming a lost
art. In popularity, it runs a dismal fourth place behind Google
searches of Sex, Drugs, and Rock and Roll'. Hopefully, these pages
will inspire you to shake the bonds of a summarized management
console and get your hands dirty with the raw firewall log data.
Though Checkpoint’s OPSEC is the featured data transport technology,
the principles of analysis and MySQL queries presented are not only

portable, they are essential to network security.

This paper goes beyond the time honored, yet dated, attacker-
centric focus on dropped inbound traffic and proposes greater
attention to host profiling, automated snapshot analyses, and network

traffic audits.

2.Justification

Properly implemented, firewall log analysis is just one piece of
a balanced defense-in-depth?, nothing more, but nothing less. It is
no substitute for Intrusion Protection System (IPS) or Intrusion
Detection System (IDS) alerts, security event management, or network

traffic capture analysis. But, it is an indispensable companion.

Firewall logs can provide connection detail that is critical to
network forensics, and the open-source implementation described
herein is capable of providing exactly the kind of investigations
needed simply and quickly. Further, the flexibility of the system
lends itself easily to automation of alerting and reporting and

integration with other systems.

v 1.0.0

Granted, there are impressive (and expensive) commercial systems
that collect and analyze logs, learn traffic patterns and alert on
variances, and correlate information with other sensors. Some are
literally amazing, and we all should be able to afford one. But,
even the fanciest network security gadget demands audit. That means
that firewall log hits on a workstation’s web traffic should match
those recorded by a browser security appliance. An IPS might show a
variety of attacks on public servers, but the firewall logs will
reveal connection detail on additional traffic to or from the
attackers. The context of ‘audit’ is ‘cross check’. This

inexpensive and simple tool makes that possible.

So, the question now reverses. Instead of being asked to
justify why fwl-loggrabber and OPSEC LEA should be implemented, you

have to answer the question, “Why not?”

3.Caveats

There are two golden rules for keeping firewall connection data

in perspective.

A. Never forget that the data can be misleading if not

carefully cross-checked and correlated in context.

B. Always look at the data from every possible perspective.

Some questions simply cannot be answered reliably by looking at
the firewall log data alone. Legitimate peer-to-peer and malicious
botnet traffic can often express identical connection patterns, yet

flow and content based tools can help differential between the two.

v 1.0.0

Data from firewall interfaces are susceptible to spoofed traffic
and should never be the basis for sending an abuse complaint without

confirming a three-way handshake from another sensor.

4 .Methods of Log Access

Offline Export

The process for obtaining Checkpoint firewall logs most familiar
to many is likely to be the export of text logs from the management
server with the command ‘fw log’. Most CPFW admin’s are familiar
with use of this utility from the firewall management server to
export the logs to a text file that is then copied elsewhere for

analysis, or even pipe the output to syslog.

The firewall logs can also be exported to a text file via the
Smartview Tracker GUI, but this process is even slower than using ‘fw

log’from the management server console login.

The major downsides to this method are time and resources
demands. FW log exports are relatively slow, and it could take hours
for each log. Then, considerable programming time could be required
for analysis if a packaged solution is not used. And, though there
are a number of fine systems for correlation or analysis of textual
data, they are always going to be slower than searching through a

structured database.

There is also the question of data security if clear text logs

are transported across the network.

One important thing to remember even if you intend only to

v 1.0.0

conduct offline log analysis is that fwl-loggrabber is going to be
faster than the native Checkpoint export methods. My personal
experience has been several hours for log export with ‘fw log’ or
‘Smartview Tracker export’compared to an hour or less using fwl-

loggrabber, whether writing to a text log file or MySQL database.

Online, Real-Time

Online, real-time solutions must speak Checkpoint’s OPSEC to
securely transport connection log data from the Checkpoint firewall
management server to a client console. Checkpoint Smartview Tracker

is a fine example, and it is suitable for very simple queries.

There are various commercial SIM/SEM/SEIM (security information/
event management) products on the market that utilize OPSEC. Most of
them are very expensive. Some are relatively inexpensive, such as

Splunk.

There are a few open-source systems available, such as OSSIM

(which has an fwl-loggrabber plugin).

Then, there is the fwl-loggrabber setup described here.

5.Implementing fwl-loggrabber

The extraordinarily talented and ambitious Linux admin might
take the approach of downloading the bare fwl-loggrabber source code
and the stock Checkpoint OPSEC SDK then go through all the requisite
tuning of the environment, configuration files, and scripts to
achieve a working system. From experience, I can tell you that

approach can take a fair amount of time and skill.

v 1.0.0

As a working Linux system administrator for many years, I prefer
the simple and easy approach of the Splunk prepackaged fwl-
loggrabber. The fine folks at Splunk have combined almost all of the
necessary parts in a relatively easy to make bundle. Splunk’s
original intent was to make it easier for their customers to
implement an OPSEC pathway into their affordable event management
solution. Even though their licensing puts no obligation on use of
their efforts with fwl-loggrabber, many organizations could benefit
from their commercial product and it would only be fair to have a

look.

That being said, it’s time to get fwl-loggrabber built and

working.

There are two decisions to make before starting:

32-bit or 64-bit.

The 32-bit or 64-bit decision is one of preference to be decided
by your architecture. The predominant criteria are RAM and speed,
and RAM will affect speed. Most 32-bit software and hardware
combinations are going to limit each application to 4GB or less of
RAM. This can be a serious problem for query caching, temporary
data, and other database analysis activities. A complex query, or
even concurrent simple queries can throw MySQL into disk paging,
which can backlog the real-time log writes to the database. You do

not want this happening if you rely on real-time data for alerting.

Since 64-bit applications can improve performance and the

architecture increases the amount of available RAM, I personally

v 1.0.0

recommend that solution for the database server.

One system or two.

You can run fwl-loggrabber on one system and write the firewall
data to a separate database server, or run fwl-loggrabber on the

database server itself. Two factors affect this decision.

At present, fwl-loggrabber and Checkpoint’s OPSEC SDK are
compatible with 32-bit libraries only. Running fwl-loggrabber
standalone from a 64-bit database server removes the complexity of
implementing the supporting 32-bit libraries for fwl-loggrabber.
But, identifying those libraries and getting fwl-loggrabber working
on the 64-bit database server isn’t all that hard.

In addition, having the database server separate from the
loggrabber client introduces network latency. Your network topology

will decide if that could be a problem.

Building the client host

fwl-loggrabber on Linux is no harder to compile and configure
than any other relatively simple source code package. Using the
Splunk adaptation helps bypass the tuning of many environment

variables and configuration file settings.

For simplicity, the software should be compiled on a 32-bit
Linux installation, which will also serve to provide the few

necessary libraries when running it on a 64-bit database server.

These instructions are for the Debian 5 Lenny i386 distribution

with

v 1.0.0

the install options “Desktop Environment” and “Standard System”

selected. Adjust accordingly for other distributions.

Untar the package fwl-loggrabber-splunk.tar.gz to

‘/usr/local/src’.

look

The resulting directory structure for building the software will

like this:

fwl-loggrabber-splunk
drwxr-x--- 2 507 507 4096 2007-09-11 12:33 lea-bundle

drwxr-xr-x 2 507 507 4096 2007-07-18 15:01 doc

drwxr-xr-x 2 507 507 4096 2007-07-18 18:00 config
drwxr-xr-x 4 507 507 4096 2007-07-18 18:45 bin

drwxr-xr-x 5 507 507 4096 2007-09-11 00:18 opsec-tools
drwxr-xr-x 6 507 507 4096 2006-01-08 04:24 pkg rel linux
drwxr-xr-x 6 507 507 4096 2006-01-17 12:19 pkg rel solaris gcc
-rw-r--r-- 1 507 507 15938 2005-02-21 13:41 fwl-loggrabber.h
-rw-r--r-- 1 507 507 18349 2005-02-21 13:41 LICENSE
-rw-r--r-- 1 507 507 2625 2007-07-18 18:34 Makefile.solaris
-rw-r--r—-- 1 507 507 2731 2007-07-18 18:25 Makefile.linux
-rw-r--r—-- 1 507 507 3837 2007-09-11 14:26 README.splunk
-rwxr--r-- 1 507 507 193915 2007-07-18 15:16 fwl-loggrabber.c

Debian 32-bit Build Host Setup

Assuming a fresh install of Debian 5.0 ‘Lenny’, standard

Workstation selection default with the following additional packages:

openssh-server, gcc-4.3, make, libpam-dev, libelf-dev, libstdc+

+6-4.3-dev, and unixodbc-dev

(if you wish, this can all be done with the single command:
aptitude install openssh-server gcc-4.3 make libpam-dev libelf-

dev libstdc++6-4.3-dev unixodbc-dev)

Before compiling fwl-loggrabber, there are some important

considerations as to the source code. I recommend reviewing the

v 1.0.0

appendix Hacking fwl-loggrabber before continuing.

From the fwl-loggrabber-splunk directory

Edit Makefile.linux for:

CC_CMD gcc-4.3

LD CMD gcc-4.3

Uncomment the DYNAMIC ODBC lines and correct them to read:

ODBC_CFLAGS = —DDYNAMIC_UNIXODBC -DODBCVER=0x0351
-DUSE_ODBC -I/usr/include

ODBC_LIBS = /usr/lib/libodbc.so /usr/lib/libodbcinst.so

Change the line:

LIBS = -lpthread -lresolv -1dl -lpam -1lnsl -lelf -1stdc++
to read:

LIBS = -lpthread -lresolv -1dl -lpam -lnsl -lelf -lstdc++ $
(ODBC_LIBS)

At this point, the command ‘make -f Makefile.linux’should

complete with no errors and you will have the following executables:
/usr/local/src/fwl-loggrabber-splunk/bin/linux/fwl-loggrabber
/usr/local/src/fwl-loggrabber-splunk/opsec-

tools/linux22/opsec_pull cert

If this host will be the working log grabber system, fwl-
loggrabber and opsec pull cert should be copied to a suitable

directory for the application, such as ‘/opt/loggrabber’ or

10

v 1.0.0
*/usr/local/loggrabber’, or whatever you prefer.

If you are going to use fwl-loggrabber on this or another 32-bit
system, skip the following section that relate to adding the
needed 32-bit libraries to a 64-bit server. Otherwise, copy the
executables fwl-loggrabber, opsec_pull cert and the libarary
files /lib/libelf.so.1, libmysqglclient r.so.15, and libodbc.so
to a USB drive and proceed to the 64-bit database server setup.
Alternatively, you can use ‘scp’from the 64-bit server if the
32-bit build workstation will be available online.

Setting up fwil-loggrabber on a 64-bit server

NOTE: don’'t forget about NTP.

Assume the following data throughout the configuration process,

substituting your actual data where necessary.

192.168.1.30 loggrabber.mydomain.net #the mysqgl database

server

192.168.1.75 fwlmgmt.mydomain.net #the Checkpoint

Management Server

One critical item to check on the mysql server is the /etc/hosts
file. It should contain a valid network host entry for the server,
not a default 127.0.1.1 entry. Ensure that the ip address and
hostname match reality, then reboot. If the hostname and ip address
don’t match the actual network setup, the certificate you retrieve

later from the Checkpoint Management Server will NOT work.

These instructions are for the Debian 5 Lenny AMD-64 (64-bit)
distribution with the install options “Desktop Environment”de-
selected and “Standard System” selected. Adjust accordingly for

other distributions.

11

v 1.0.0

The following packages added after the post-install reboot:
openssh-server, mysql-server, unixodbc, 1lib32stdc++6, ia32-libs

(if you wish, this can all be done with the single command:
aptitude install openssh-server, mysql-server, unixodbc,

lib32stdc++6, ia32-1libs)

Continue the server setup by making the working directory
/opt/loggrabber and copying the fwlloggrabber and opsec_pull cert

executables to it from the 32-bit build server.

You will then need to copy the following 32-bit libraries from
the build system /usr/lib/ to the /1ib32 directory of the 64-bit
mysql server:

libelf.so.1

libmysglclient r.so.15

libodbc.so
libreadline.so.5

And, you will need to copy the following executable to the /opt/

loggrabber directory:
/usr/bin/isql

I recommend that your rename it to isql32 to prevent any

confusion with the native 64-bit isgl executable.

In the working directory, use the Linux utility ‘1ldd’to verify
that the dependent libraries for both fwl-loggrabber and

opsec_pull cert are present. The output should resemble this:

/opt/loggrabber# 1dd fwl-loggrabber

linux-gate.so.l => (0xf7£3b000)
libpthread.so.0 => /1ib32/libpthread.so.0 (0xf7£1a000)
libresolv.so.2 => /1ib32/libresolv.so.2 (0xf7£07000)

12

v 1.0.0

libdl.so.2 => /1lib32/libdl.so.2 (0x£7£03000)
libpam.so.0 => /lib32/libpam.so.0 (0xf7e£8000)
libnsl.so.l => /1ib32/libnsl.so.l (0xf7edf000)
libelf.so.1l] => /emul/ia32-1linux/lib/libelf.so.1
(0x£7ecb000)
libstdc++.s0.6 => /usr/1lib32/libstdc++.s0.6 (0x£7ddd000)
libodbc.so.1l => /usr/1lib32/libodbc.so.1l (0x£7d7d000)
libgcc_s.so.1l => /usr/1lib32/libgcc_s.so.l (0x£7d70000)
libc.so.6 => /1ib32/libc.so.6 (0xf7c1e000)
/1lib/1d-linux.so.2 (0xf7£3c000)
libm.so.6 => /1ib32/libm.so.6 (0xf7b£f9000)
libltdl.so.3 => /usr/lib32/1libltdl.so.3 (0xf7b£f2000)

/opt/loggrabber# 1ldd opsec_pull cert

linux-gate.so.l => (0xf7fbb000)

libpthread.so.0 => /1lib32/libpthread.so.0 (0x£f7£9a000)
libresolv.so.2 => /1ib32/libresolv.so.2 (0xf7£87000)
libdl.so.2 => /1lib32/libdl.so.2 (0x£7£83000)
libpam.so.0 => /1ib32/libpam.so.0 (0x£f7£78000)
libnsl.so.l => /1ib32/libnsl.so.l (0x£f7£f5£f000)
libc.so.6 => /1ib32/1libc.so.6 (0x£f7e0d000)
/lib/ld-linux.so.2 (0xf7fbc000)

If there are no’Not found’entries, you should be able to enter
the command ‘./fwl-loggrabber —h’and see the fwl-loggrabber help menu

and proceed to the configuration steps.
Creating the mysql database:

Run mysql as root, then enter the following command:

CREATE DATABASE fwllogs;

GRANT ALL PRIVILEGES ON fwllogs.* TO 'fwlogger'@'localhost'
IDENTIFIED BY 'SnOOPy';

flush privileges;

Configuring ODBC

The files you will be working with here are /etc/odbc.ini and

13

/etc/odbcinst.ini.

First make odbc.ini look like this:

[FWl-Logs]
Description
Driver
Trace
TraceFile
Database
Server

Port

User
Password

= FWING Log Connection

MySQL

Yes
/tmp/odbc.log
fwllogs
localhost
3306

fwlogger

= Sn00Py

Then, edit odbcinst.ini as follows:

[MySQL]
Description
Driver
Setup
UsageCount

MySQL driver

= /1ib32/libmyodbc.so

/1ib32/1libodbcmyS. so

= 2

Configuring the Checkpoint Firewall

v 1.0.0

I recommend doing this phase of configuration from a Windows

workstation, so you can run the Checkpint SmartDashboard and ssh to

the fwl-loggrabber/MySQL server on the same screen.

Before the fwlloggrabber database server can be configured to

pull firewall logs, an Opsec Application Object must be created in

the Checkpoint SmartDashboard.

First, select the ‘Servers and OPSEC Applications’ tab.

Right-clicking on the

the option ‘New OPSEC Application’ which should be selected.

‘OPSEC Applications’pull-down will present

14

Check Point SmartDashboard

SMARTDASHBOARD

File Edit Wew Manage FRules Policy SmartMap Search Window Help
EERL L IETEY NI &
| 2222 = || el =2 | 2B » & |&a & B X
%qlaB &8 2 content Inspection |

= E} Servers and OPSEC Applications 58 Security |

= [Servers
g s I

= {5 OPSEC Applications

- @l

Mew OPSEC Applicakion. ..

Sort 4

After the ‘New OPSEC Application’option is selected, the

following configuration window will pop up:

v 1.0.0

15

v 1.0.

[l =y = L Hata =1r Halr,

P OPSEC Application Properties - cplogger

Eeneral |

I ame: | cplogger [

B | Comment: | fw1loggrabber connection |

Calor: I

Hast: L] nFosec_crrw v Mew...
Application properties !
“Yendar: | IJzer defined W |
2 Product; Werzion:
B are. . 3
Server Entities Client E ntities
[CICWP [TELA
CIUFF [wLEA,
[C1AkOM 1540
[CICPhI
[10mI
[b
L]

Secure Intermal Communication -

[k.][Cancel][Help]

i

The fields you will complete will be Name, Comment, a New Host
Client Entries ‘LEA’, then the Security Internal Communication

section.

Click on the New Host button and enter a suitable object name
for the host, the ip address of the fwl-loggrabber server, and a

suitable comment to describe the host such as shown:

0

14

16

v 1.0.0

| Host Node - INFOSEC_CPFW

P

Click on the [OK]

dialogue.

General Properties
T opalogy

MNAT

Advanced

Host Mode - General Properties

Name: INFOSEC_CPFw/ |
P Address: |192.168.1.75 | | Get address
Comment: | fi1 loggrabber connection

Color I

Froducts:

[E| Configure Servers. ..

button to return to the OPSEC Application

17

I ame:

| OPSEC App

Eeneral |

[l =y = L Hata =1r

lication Properties - cplogger

! cplogger

tic Comment; | fwillogarabber connection

Calar. I
Hast: L] nFosec_crrw v Mew...
Application properties
“Yendar: | IJzer defined W |
2 Product; Werzion:
Server Entities Client E ntities
[CICWP [TELA
CIUFF LEA
[C1AkOM 1540
[CICPhI
[10mI
[

Secure Intermal Communication

| ok

][Cancel][Help

-

i

v 1.0.0

The last step of the configuration is to coordinate setup of the

Secure Internal Communication section with setup on the MySQL server

LEA client side.
config files should be completed.

above information in the DN:

field before proceeding.

At this point, the lea.conf and fwl-loggrabber.conf

Be sure to copy or write down the

18

v 1.0.0
Configuring fwl-loggrabber

In /opt/loggrabber, edit lea.conf as follows:

lea server auth type sslca

lea server ip 192.168.1.75 fwlmgmt

lea server auth port 18184

lea server port 18184

opsec_sic _name "CN=cplogger,O= fwlmgmt.mydomain.net.uxeqrb"
opsec_sslca file /opt/loggrabber/opsec.pl2

lea server opsec_entity sic name "cn=cp_mgmt, o=
fwlmgmt.mydomain.net.uxeqrb"

The lea server ip and host name are of the Checkpoint firewall
management server. The opsec sic name entry comes from the
‘DN:’'field in the OPEC Application dialogue. The lea server
opsec_entity sic name comes from the common name ‘CN’of the
Checkpoint firewall management server and the organization ‘O’ entry.

In /opt/loggrabber, edit fwl-loggrabber.conf as follows:
DEBUG_LEVEL="0"

#

FWl configuration settings
#

FWl_LOGFILE="fw.lOg"
FWl_OUTPUT="logs"
FWl_TYPE="ng"

FWl MODE="normal"

ONLINE MODE="yes"

RESOLVE_ MODE="no"
SHOW_FIELDNAMES="no"
RECORD_SEPARATOR="|"
DATEFORMAT="std"
LOGGING_CONFIGURATION=OdbC
OUTPUT_FILE_PREFIX="fW“
OUTPUT_FILE_ROTATESIZE=10000482
SYSLOG_FACILITY="LOCAL1"
ODBC_DSN=FW1—LOgS

Once the above configuration files are edited on the MySQL/fwl-

loggrabber server, the next steps will alternate between that server

19

v 1.0.0

and the Checkpoint firewall management server OPSEC Application

dialogue.

Click on the [Communication] button, and an ‘Activation
Key’'dialogue will pop up. Here, you will define a one-time password
that you will use on the MySQL/fwl-loggrabber server. Create a
password, write it down, then enter it into both the ‘Activation
Key:’ and ‘Confirm Activation Key:’' fields of the
‘Communication’dialogue, then click on the [Intialize] button. After
seeing that the ‘Trust State:’'has changed, click on the [Close]
button. 1It’s time now to opsec pull cert the certificate you just

created.

O | Copment | fuwllogarabber connection | |

Communication

The Actiwation Key that you specify must alzo be uzed in the module configuration.

Activation Key: |

!
Confirm Activation ey I |

Truzt state: Ir'|itia|iEEu:| bt brust naot establizhes

[. Inihialize] [Reset]

[Cloze] [Help]

L

From the MySQL/fwl-loggrabber server, change to the

/opt/loggrabber directory and run opsec pull cert as follows:

20

v 1.0.0

./opsec_pull cert -h 192.168.1.75 -n cplogger -p <one-time

password here>

If there are no errors, opsec_pull cert will use the one-time
password to grab the certificate from the Checkpoint firewall
management server and store it in /opt/loggrabber as opsec.pl2. That
certificate is used by OPSEC to encrypt communication between the
Checkpoint firewall management server and the fwl-loggrabber client

running on the MySQL server.

Back on the Checkpoint firewall management server OPSEC
Application dialogue, it’s time to click on [Communication] again.

This time, you should see ‘Trust Established’as below:

L LA] e i

Communication

The Activation K.ey that pou specify must alzo be used in the module configuration.

Activation Key:

Confirmn Activation Kew: .

T
(1]

Trust state; ru:z:t eztablizher

L

You can now click on [Close] to quit the Communication dialogue.

21

v 1.0.0

And, now that the new OPSEC Application is fully defined, you

can click on [OK] to close this dialogue.

Il =y = L Hata f=1r Healr

P OPSEC Application Properties - cplogger

al | General |
& .
Mame: | cploger , :
tio Comment; |fl.-'-.l'| loggrabber connection | N
cor | I |
Huost: L mFosec_crrv v Mew... B
Application properties !
Yendar: i |Jzer defined b |
2 Product; Wersion:
ochvale 5
Server Entities Client E ntities
[CCwP [JELA
CIUFF [w]LEA
[CJAMOM []5AM
[CICPHI
[C10mMI
LA b
I
Secure Intermal Communication L
DiM: | CH=cplgger, 0= fw]mgmtmydemain. ret wegqrb !
[k.] [Cancel] [Help]

IMPORTANT: Now that you’ve done all this work, be certain to
save your configuration changes when you quite the Checkpoint

firewall management server’s SmartDashboard.

22

v 1.0.0

6 .Hacking the fwl-loggrabber code

I had two problems with the original fwl-loggrabber source code

in the ODBC ONLINE MODE.

The first problem was with the selection and number of fields
retrieved. In ONLINE MODE, or real-time log retrieval, all of the
defined fields are grabbed. Some of those fields are firewall
specific, while others pertain to VPN, Smart Defense, and other
capabilities. Since I only wanted the firewall connection specific
fields, this presented a problem. In addition, I particularly wanted
the object named ‘Rule UID’, which is not configured in the stock

fwl-loggrabber source code.

The second problem I had was the indexing. To speed up searches
in the MySQL database, all critical fields should be indexed. 1In the

original source code, this was not the case.

The solution was to hack the source code, which is a wonderful
aspect of open source software. It also helps to have quite a bit of

C programming experience, which I have.

To demonstrate the field problem, observe the sample output

below from a stock fwl-loggrabber executable:

| fwlnumber | fwltime | fwlaction | fwlorig | fwlalert |
fwlif dir | fwlif name | fwlproduct | fwlsrc | fwls port | fwldst
| fwlservice | fwltcpflags | fwlproto | fwlrule | fwlxlatesrc | fwlxlatedst |
fwlxlatesport | fwlxlatedport | fwlnat rulenum | fwlresource | fwlelapsed |
fwlpackets | fwlbytes | fwlreason | fwlservice name | fwlagent | fwlfrom | fwlto |
fwlsys msgs | fwlfw message | fwlinternal ca | fwlserial num | fwldn | fwlicmp |

fwlicmp type | fwlicmp type2 | fwlicmp code | fwlicmp code2 | fwlmsgid |

23

v 1.0.0

fwlmessage info | fwllog sys message | fwlsession id | fwldns_query | fwldns_type
| fwlscheme | fwlsrckeyid | fwldstkeyid | fwlmethods | fwlpeer gateway | fwlike |
fwlike ids | fwlencryption failure | fwlencryption fail r | fwlcookiei |
fwlcookier | fwlstart time | fwlsegment time | fwlclient in packets |
fwlclient out packets | fwlclient in bytes | fwlclient out bytes | fwlclient in if
| fwlclient out if | fwlserver in packets | fwlserver out packets |

fwlserver_in bytes | fwlserver out bytes | fwlserver in if | fwlserver out if |
fwlmessage | fwlnat addrulenum | fwluser | fwlsrcname | fwlvpn user | fwlom |
fwlom method | fwlassigned ip | fwlmac | fwlattack | fwlattack_info |

fwlcluster info | fwlduring sec | fwlfragments dropped | fwlip id | fwlip len |
fwlip offset | fwltcp flags2 | fwlsync_info | fwllog | fwlcpmad | fwlauth method |
fwltcp packet oos | fwlrpc prog | fwlth flags | fwlcp message | fwlreject cat |

Now, look at the headers of my hacked version:

| fwlloc | fwltime | fwlaction | fwlorig | fwlif dir |
fwlif name | fwlsrc | fwls port | fwldst | fwlservice | fwltcpflags |

fwlproto | fwlrule uid |

Quite a difference. Now, let’s compare the differences in

indexing.

In the stock source code, only the fwlnumber field is indexed.
In my hacked code, fwltime, fwlsrc, fwldst, and fwlservice are

indexed.

If you would prefer my hacked version of the code, I am
providing a package of the hacking notes, a patch file that includes
my hacks, and a copy of the working fwl-loggrabber executable, just

in case you don’'t want to do any hacking or compiling at all.

If there is enough interest in my implementation of fwl-
loggrabber, I could be motivated to build a complete Linux

installation disc.

24

v 1.0.0

Email me at ‘fwmark AT altsec.info’to get a download link to
my hack package and a status report on availability of any

improvements, or if you would like to help out with the project.

25

v 1.0.0

7.Scripts for fwl-loggrabber
fwl-rotate.sh

This script is run from a cron job at 23:59 every night. It not
only rotates the current log to an archive table, it compresses the

table and restarts fwlloggrabber.

Crontab for root (crontab —e):

m h dom mon dow command

59 23 * * * /usr/local/loggrabber/fwl-rotate.sh

Script:

#!/bin/sh

#fwl-rotate.sh will archive the current ‘fwllogs’ table to a
date named archive table, such as ‘fwllogs.20090529°

#it stops fwl-loggrabber, renames the current table to archive,
recreates the current table and restarts fwl-loggrabber, then
compresses the archived table

TNOW="date "+%Y%m%d""

TFILE=" tempfile”

cd /usr/local/loggrabber

echo "rename table fwllogs.fwllogs to fwllogs.$TNOW" > STFILE
echo "drop table fwllogs.auditlogs" >> STFILE

echo "drop table fwllogs.loggrabber" >> S$TFILE

echo "" >> STFILE

FPID="/bin/pidof fwl-loggrabber"

/bin/kill -KILL SFPID

/usr/bin/isql32 FWl-Logs32 fwlogger Pz8 RR-uwB#d < S$TFILE

26

/usr/local/loggrabber/fwl-loggrabber --create-tables

/usr/local/loggrabber/fwl-loggrabber
1>/usr/local/loggrabber/grabber.log
2>/usr/local/loggrabber/grabber.err &

rm -f STFILE

echo "Compressing S$TNOW"

cd /var/lib/mysql/fwllogs

myisampack -v S$TNOW
myisamchk -rg S$TNOW

v 1.0.0

27

v 1.0.0

8.References

Firewall Log Analysis Primer.
http://www.secureworks.com/research/articles/firewall-primer/

OPSEC LEA Integration — Splunk. The link to Splunk’s packaging of
fwl-loggrabber with Checkpoint’s OPSEC SDK.
http://www.splunk.com/view/SP-CAAABJV

Splunk fwl-loggrabber package.

http://download.splunk.com/support/OPSEC/fwl-loggrabber-

splunk.tar.gz

Checkpoint OPSEC SDK downloads.

http://www.opsec.com/cp products/90.htm

MySQL Help. http://forums.mysqgl.com/

http://dev.mysqgl.com/doc/index.html
Using opsec_pull cert.
https://supportcenter.checkpoint.com/supportcenter/portal?
eventSubmit doGoviewsolutiondetails=&solutionid=sk11520
OSSIM (Open Source Security Event Management).

https://www.ossim.net/

Log Analysis. http://www.loganalysis.org/

SEC (Simple Event Correlator). http://www.estpak.ee/~risto/sec/

28

http://www.loganalysis.org/
https://www.ossim.net/
http://forums.mysql.com/
http://www.opsec.com/cp_products/90.htm
http://download.splunk.com/support/OPSEC/fw1-loggrabber-splunk.tar.gz
http://download.splunk.com/support/OPSEC/fw1-loggrabber-splunk.tar.gz
http://www.splunk.com/view/SP-CAAABJV

! Google search hits. Sex 783,000,000 - Drugs 187,000,000 - Rock and Roll
41,300,000 — Firewall Log Analysis 380,000. Retrieved February 21, 2009 from

wWww.dJgoodgle.com

2 Analyze This, Haral Tsitsivas. Retrieved March 17, 2009 from

http://www.unisol.com/papers/UNISOL_ED_IWA.pdf

http://www.google.com/

